Telegram Group & Telegram Channel
Как оценивать важность признаков и зачем это делать? Например, для случайного леса

Оценка важности признаков в машинном обучении помогает понять, какие из них больше всего влияют на результат модели. Это полезно, чтобы интерпретировать поведение модели, улучшить её производительность, а также сократить количество признаков, минимизируя вычислительные затраты и предотвращая переобучение.

Вот специфичные для случайного леса методы:

▪️ Оценка количества разбиений по данному признаку.
В процессе построения деревьев случайный лес принимает решения на основе разбиений по различным признакам. Чем чаще признак используется для разбиения, тем более он важен для модели, так как чаще помогает разделять классы или предсказывать значения.

▪️ Суммарный information gain.
Это общая величина уменьшения неоднородности (например, по критерию Джини или энтропии) при разбиениях, основанных на данном признаке. Если признак приводит к большому приросту информации, он считается значимым, так как повышает предсказательную способность модели.

А вот универсальный способ оценки — permutation importance. Этот метод заключается в перемешивании значений одного признака после того, как модель обучена, и последующей оценке влияния этого признака на качество модели. Если, после перемешивания значений, качество модели резко падает, значит, признак был важен. Этот метод хорошо работает для любых моделей, так как он не зависит от внутренней структуры алгоритма.

#машинное_обучение



tg-me.com/ds_interview_lib/658
Create:
Last Update:

Как оценивать важность признаков и зачем это делать? Например, для случайного леса

Оценка важности признаков в машинном обучении помогает понять, какие из них больше всего влияют на результат модели. Это полезно, чтобы интерпретировать поведение модели, улучшить её производительность, а также сократить количество признаков, минимизируя вычислительные затраты и предотвращая переобучение.

Вот специфичные для случайного леса методы:

▪️ Оценка количества разбиений по данному признаку.
В процессе построения деревьев случайный лес принимает решения на основе разбиений по различным признакам. Чем чаще признак используется для разбиения, тем более он важен для модели, так как чаще помогает разделять классы или предсказывать значения.

▪️ Суммарный information gain.
Это общая величина уменьшения неоднородности (например, по критерию Джини или энтропии) при разбиениях, основанных на данном признаке. Если признак приводит к большому приросту информации, он считается значимым, так как повышает предсказательную способность модели.

А вот универсальный способ оценки — permutation importance. Этот метод заключается в перемешивании значений одного признака после того, как модель обучена, и последующей оценке влияния этого признака на качество модели. Если, после перемешивания значений, качество модели резко падает, значит, признак был важен. Этот метод хорошо работает для любых моделей, так как он не зависит от внутренней структуры алгоритма.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/658

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Библиотека собеса по Data Science | вопросы с собеседований from ms


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA